1.2. Уровни организации биоразнообразия

Как уже отмечалось, современные представления в биологии в зна­чительной мере связаны с концепцией уровней организации. При этом, несмотря на то, что разными исследователями выделяется различное число таких уровней, в связи с чем существует множество систем классифика­ции (Гиляров, 1954; Шмалыаузен, 1961; Наумов, 1964, 1977; Беклеми­шев, 1964; Завадский, 1966; Маркевич, 1968, 1985; Тимофеев-Ресовский идр., 1969; Маркевич, Депенчук, 1970; Ляпунов, 1972; Шварц, 1973, 1980; Одум, 1975; Шилов, 1981 и др.), однако мнение большинства совпадает, что все многообразие выделяемых уровней с точки зрения функциональ­ных особенностей биосистем можно свести к трем основным: организменному, популяционному и биоценотическому (довольно часто в каче­стве самостоятельного выделяют еще и биосферный уровень). Уровни ниже организменного самостоятельно не существуют и воспроизводятся только с воспроизведением организмов.

Выделяемый многими исследователями видовой, или популяцион-но-видевой уровень организации устанавливается по таксономическому принципу. Дальнейшее распределение живых организмов на основе так­сономических отношений предусматривает родовой и более высокие уров­ни организации. Мы на них останавливаться не будем. Во-первых, пото­му что не существует единой классификации живых организмов по так­сономическим признакам (нередко специалисты имеют неодинаковые, а иногда и противоположные взгляды на систематику тех или иных групп организмов), а принятые системы классификации достаточно часто из­меняются. Во-вторых, таксономическая соподчиненность организмов с позиций экологической теории не имеет значения, более весомым явля­ется их функциональная роль в экосистемах. Учитывая это, примем лишь видовой уровень, из которого легко выводятся все другие таксономичес­кие уровни, который является объектом видовой охраны и популяции ко­торого взаимодействуют между собой.

В литературе в большинстве случаев биоразнообразие рассматри­вается как генетическое, популяционное, видовое, ценотическое и эко-системное. Признанию и характеристике их мы обязаны критическому анализу четырех научных дисциплин: таксономии, генетики, биоценоло­гии и экологии. Первая устанавливает изменчивость надорганизменных систем, начиная с вида или подвида, вторая выявляет генную вариабель­ность внутривидовых систем, биоценология, соответственно, — группи­ровок всех рангов, экология — экосистем (Конвенщя про бюлопчнс роз-маптя: громадська об1знашсть i участь, 1997).

Исходя из общих принципов выделения уровней организации живого и анализа их существующих классификационных систем, можно прийти к выводу о том, что биоразнообразие имеет типичный веерный, дивер­гентный тип организации, от базовых уровней которого отходят произ­водные уровни. Они по мере удаления от базового все менее и менее жестко связаны между собой и тем более с базовыми, образуя все вместе функционирующую, т.е. переходящую из одного состояния в другое в виде циклов иерархическую систему. В основе выделения дивергентного ряда уровней лежит различие в системообразующем факторе, а базового и производных — степень его проявления. Все дивергентные иерархичес­кие ряды уровней связаны между собой многочисленными связями иного типа по сравнению с их организующим, образуя, таким образом, не­прерывную сеть взаимодействий (Емельянов, Шеляг-Сосонко, 1997; Ше-ляг-Сосонко, Емельянов, 1997).

Первый уровень — внутриорганизменный. Его уровни по сравне­нию со всеми последующими в наибольшей степени связаны между со­бой, так как образуют единый целостный, дискретно обособленный, функ­ционально самостоятельный организм. Основной его функцией является воспроизводство себе подобных. Это жестко детерминированная систе­ма, все уровни которой являются основой жизнеобеспечения. В ее струк­туре выделяются собственно генетические уровни: нуклеотидов, генов, хромосом и ядра у всех эукариотических организмов и условно генети­ческие уровни: клеток, тканей, органов и организма. На клеточном уров­не ядро, цитоплазма, клеточная оболочка образуют морфо-функциональ-ное единство, которое у одноклеточных является одновременно и орга­низмом. Ядерно-генетический аппарат управляет всеми белковыми син­тезами, и через них — физиологическими процессами в клетке, а цито­плазма регулирует активность ядра и снабжает его веществом и энерги­ей. В основе самовоспроизведения эукариотических клеток лежит митоз (Конвенщя про б!олопчне розмаггтя: громадська обЬнашсть i участь, 1997).

Организменный уровень является базовым для веера надорганиз­менных иерархических уровней. Принципиальной особенностью их яв­ляется то, что все они представляют собой совокупности индивидуумов, организованных на основе различных типов связей. Схематично, напри­мер для животного мира, прежде всего можно выделить генетическую линию, которая представляет собой наследуемые уровни организации в виде филогенетического древа различных таксономических уровней. Ба­зовым уровнем для нее является генетическая популяция со всей после­дующей иерархией единиц: вид, род, семейство, отряд, класс, тип, цар­ство.

Ценотическая линия формируется на основе способности особей пенопопуляций различных видов ассоциироваться в разной степени в ста­бильные, устойчивые фитосистемы. Здесь базовым уровнем является со­общество с последующей иерархией единиц: ассоциации, группа ассо­циаций, формации, класс формаций, тип, группа типов, царство. На ос­нове этой линии формируется линия биосистем. Для линии территори­альной неповторимости общности совокупностей локальных популяций (локопопуляций) различных видов разного географического происхож­дения базовым уровнем является флористический комплекс, а последу­ющими — элементарная флора, флористический район, округ, провин­ция, область, царство. Такой же является и линия территориальной неповторимости совокупностей сообществ, базовым уровнем которой яв­ляется ценокомплекс, а последующими — ценорайон, округ, провинция, область, царство. На этой линии основывается и более общая линия — комплекса биосистем (Шеляг-Сосонко, Емельянов, 1997).
Функциональная линия представляет собой системы топически, тро­фически, фабрически и т.д. связанных между собой и с физической сре­дой обитания совокупностей особей и популяций, образующих функцио­нальное единство.

Базовым уровнем здесь является экосистема, включа­ющая подсистемы биотических и абиотических компонентов, а ее эле­ментами — консорция и экопопуляция. Основная функция экосистем зак­лючается в постоянном биогенном круговороте веществ, в трансформа­ции и передаче энергии и информации. Экосистема является элементар­ной функциональной единицей биосферы. К сожалению, классификация экосистем пока еще не разработана. Имеющиеся попытки построить ее на ландшафтной или биогеоценотической основе методологически не кор­ректны. Поэтому целесообразно классифицировать экосистемы на струк­турно-функциональной основе и в качестве базового уровня выделить элементарную экосистему, состоящую из набора консорций одного типа или их комплекса и экопопуляций. Следующим уровнем будет макроэко­система, состоящая из комплекса элементарных экосистем одного типа. Далее — макроэкосистема второго порядка, состоящая, соответственно, из комплекса макроэкосистем первого порядка и т.д. до биосферы (Ше-ляг-Сосонш, Емельянов, 1997).

Таким образом, схема уровней организации биоразнообразия будет иметь следующий вид (рис. 1).
Как видно из схемы, в основе всех линий иерархического разнообразия лежат организм и популяция. Последнее свидетельствует о том, что эти уровни интеграции биосистем являются базовыми единицами дивергент­ного типа организации биоразнообразия.

Для решения наших задач наибольший интерес представляет функ­циональная линия, где в качестве базового уровня выступает элементарная экосистема, состоящая из набора консорций одного типа или их комплекса и экологических популяций.

Как известно, популяция является формой существования вида. Ес­тественно поэтому, что адаптация вида к условиям существования про­исходит посредством приспособления видовых популяций к конкретным условиям среды. При этом существование в живой природе двух систем интеграции — видовой и биоценотической — позволяет одновременно считать популяцию как частью целостного вида, так и компонентом экосистемы (Гиляров, 1954; Рафес, 1968; Наумов, 1973; Шварц, 1973, 1980; Межжерин, 1975а; Межжерин и др., 1985, 1991 и др.). 

Следовательно, с одной стороны, каждый вид представляет собой систему взаимодейству­ющих популяций (Завадский, 1968; Шмальгаузен, 1969; Наумов, 1971), причем экологическая и генетическая общность особей в популяциях на порядок выше, чем межпопуляционная в рамках вида. Это и определяет популяцию как главнейшую и единственную сравнительно устойчивую внутривидовую группу особей, характеризующуюся способностью к го-меостазу и являющуюся элементарной эволюционной единицей (Тимо­феев-Ресовский и др., 1969; Большаков, Кубанцев, 1984). С другой сторо­ны, каждая популяция функционирует как неотъемлемый компонент биотического сообщества (Одум, 1975, 1986а), выполняя определенную роль в экосистеме и входя в какую-либо из функциональных группиро­вок (продуценты, консументы, редуценты).

Рассматривая популяцию в качестве компонента экосистемы, сле­дует отметить, что любая популяция сама по себе не может обеспечить поддержание стационарного состояния, так как элементарной единицей, способной к самостоятельному существованию, следует считать более крупное объединение — экосистему (Allee et al., 1949; O'Neill et al., 1986; Межжерин и др., 1991). Причем это объединение должно быть такого типа, при котором совокупность популяций разных видов живых орга­низмов упорядочена в цепи питания и на основе сложных межпопуляци-онных взаимосвязей и взаимодействий обеспечивает перенос вещества, энергии и информации от одного трофического уровня к другому, сба­лансированность экосистемных процессов и поддержание биотического круговорота веществ в пределах экосистемы.

Устойчивое существование экосистем возможно лишь при опре­деленных количественных соотношениях взаимодействующих друг с дру­гом популяций живых организмов (т.е. выступающих в роли подсистем), занимающих определенное место в цепях питания и обеспечивающих био­тический круговорот веществ и трансформированной энергии в экосис­темах. Изменения, происходящие в экосистемах, так или иначе влияют на отдельные подсистемы, что влечет за собой изменения популяцион-ной структуры живых организмов, их численности. В свою очередь, каж­дая популяция, в процессе жизнедеятельности воздействуя на среду и на популяции других видов, служит фактором, обусловливающим динами­ку экосистемы как целостной системы.
Поэтому для познания структурно-функциональной организации эко­систем необходимым условием является всестороннее изучение биосистем разных уровней интеграции, которые входят в состав экосистем как подсистемы, а также выяснение процессов, происходящих в результате их взаимодействия.

Материалы данного раздела

Фотогалерея

Полнолуние над Табын-Богдо-Ола - Фото Игоря Хайтмана

Интересные ссылки

Коллекция экологических ссылок

Коллекция экологических ссылок

 

 

Другие статьи

Активность на сайте

сортировать по иконкам
2 года 50 недель назад
Гость
Гость аватар
Ядовитая река Белая

Смотрели: 301,871 |

Спасибо, ваш сайт очень полезный!

3 года 2 дня назад
Гость
Гость аватар
Ядовитая река Белая

Смотрели: 301,871 |

Thank you, your site is very useful!

3 года 3 дня назад
Гость
Гость аватар
Ядовитая река Белая

Смотрели: 301,871 |

Спасибо, ваш сайт очень полезный!

3 года 28 недель назад
Евгений Емельянов
Евгений Емельянов аватар
Ядовитая река Белая

Смотрели: 301,871 |

Возможно вас заинтересует информация на этом сайте https://chelyabinsk.trud1.ru/

3 года 3 дня назад
Гость
Гость аватар
Ситуация с эко-форумами в Бразилии

Смотрели: 9,202 |

Спасибо, ваш сайт очень полезный!