3.1. Структурно-функциональная организация экосистем

Мы уже отмечали, что структурно-функциональная организация яв­ляется важнейшим свойством живых систем, а ее изучение стало воз­можным не только вследствие применения эколого-эволюционного (со­держательного) и системно-структурного (формального) подходов при анализе биологических систем (Маркович, Депенчук, 1970; Риклефс, 1979; Шеляг-Сосонко, Дидух, 1979; Уиттекер, 1980), но также и в результате последующей интеграции этих подходов при изучении структуры сооб­ществ, ее изменений в пространстве и во времени (Мазинг, 1973; Одум, 1975,1986а; Численко, 1981; Ахлибинский, 1986; O'Neilletal., 1986; Шеляг-Сосонко и др., 1991).

В связи с тем, что структурно-функциональная организация является основополагающей характеристикой биосистем организменного и надор-ганизменных уровней интеграции (Корнакер, 1970; Коган, 1977а; Энгель-гард, 1984; Алеев, 1986; Емельянов и др., 1986; Песков, Емельянов, 1987, 1988; Плотников, 1989; Межжерин и др., 1991), то, как уже обсуждалось, правомочно при анализе этой важнейшей характеристики использовать функцию энтропии для оценки количества информации (разнообразия), содержащейся в структуре биосистем надорганизменных уровней (Кам-шилов, 1966; Виленкин, 1967; Kohn, 1967; Шмальгаузен, 1960а, 1968; Margalef, 1969; Корнакер, 1970; Уоддингтон, 1970; Одум, 1975,1986а; Гиля-ров, Маркина, 1976; Наумов, 1977; Николис, Пригожий, 1979; Алимов, 1980; Песенко, 1982; Zaret, 1982; Второе, Второва, 1983; Черных, 1986; Айламазян, Стась, 1989). При этом, очевидно, нужно учитывать, что пред­ложенный показатель (индекс Шеннона) отражает степень функциональ­ного единства компонентов биосистем, обеспечивающего их нормальное существование в конкретных условиях среды. Здесь следует отметить, что разнообразие повышается по мере увеличения числа элементов и их выровненности и наоборот — снижается при сокращении числа элемен­тов и возрастании их невыровненности, причем увеличение разнообра­зия приводит к повышению сложности системы и ее организованности  (Тюхтин, 1980).

Сегодня общее признание получило положение, что биосистемы раз­ной степени интеграции от организма до биосферы включительно пред­ставляют собой диссипативные структуры (открытые, саморегулируемые и самовоспроизводящиеся системы, поддерживающие себя в состоянии, далеком от термодинамического равновесия). В этом плане "одной из глав­ных задач современной теоретической биологии является приложение теории дисснпативных структур к анализу динамики биосистем, будь то процес­сы исторического (филогенез) или индивидуального (онтогенез) разви­тия организмов" (Родин, 1991; с. 17).

Ранее уже указывалось, что оценка информационно-энергетического состояния организмов (как целостных систем) обусловливает необходи­мость учета их структурно-функциональной организации и может прово­диться по характеру скоррелированности многочисленных структур (от­дельных компонентов) — органов и систем органов. Что же касается био­систем надорганизменных уровней интеграции (популяций, биотических сообществ (биоценозов) и т.п.), то поддержание их энергетического ба­ланса обеспечивается либо путем дифференцированного использования поступающей энергии (в виде ресурсов экосистемы) различными внутрипопуляционными группировками, либо энергетической дифференциа­цией видовых популяций, определяющей их роль в той или иной экосис­теме (доминанты, субдоминанты и сателлиты). Последнее, как уже отме­чалось, позволяет производить оценку информационно-энергетических состояний надорганизменных систем по изменению их структурных характеристик: для популяций — внутрипопуляционной структуры, для биотических сообществ (биоценозов) — структуры функциональных группировок, видового разнообразия, сложности сообществ.

Особую актуальность в настоящее время приобретает исследование динамики биосистем (характера их изменений во времени) в современ­ных условиях, когда практически все экосистемы испытывают в большей или меньшей степени дополнительную нагрузку, связанную с глобаль­ным антропогенным воздействием на биосферу.

Каким же образом происходит воздействие человека на экосистемы и что можно ожидать в результате такого воздействия? Ответ на этот воп­рос крайне важен, так как только при выяснении тенденции изменений в структуре экосистем можно выйти на уровень построения прогностичес­ких моделей их функционирования и сохранения устойчивости. Однако, по-видимому, выявление только одних тенденций изменений в структур­но-функциональной организации экосистем будет явно недостаточным для последующего моделирования возможных процессов в них. Поэто­му необходима разработка теоретических основ функционирования эко­систем, так как "глобальный характер современных экологических труд­ностей требует некоего глобального системного подхода к их преодоле­нию, когда комплекс частных решений основьгеается на едином принци­пе. Последний должен быть всеобщим философским принципом, а не частным положением, претендующим на глобальный статус" (Горелов, 1985; с. 39).

Экосистемная теория основьгеается на том, что имеются некие "эмер-джвнтные" признаки, присущие сообществу как целому и не свойствен­ные отдельным видовым популяциям организмов. К таким признакам обычно относят показатели потока энергии через сообщества, их струк­туру, видовое разнообразие и др. При этом для них характерна некоторая инвариантность, диктуемая термодинамическими принципами, т.е. взаи­модействие видовых популяций в сообществах обусловлено специфичес­кими ограничениями, накладываемыми на поведение каждой из взаимо-действущих популяций (Лекявичюс, 1986).

Если подойти к рассмотрению структурной организации экосистем с позиций системного анализа, то в их составе можно выделить такие главнейшие подсистемы: с одной стороны—это биотическое сообщество, а в качестве другой важнейшей подсистемы выступает комплекс абиоти­ческих факторов. Интеграция этих подсистем в единую систему осуще­ствляется в результате взаимодействия различных качеств материи (жи­вой и косной). При этом объединить в понятие экосистемы ее качествен­но различные (живые и неживые) компоненты можно только подчеркнув ту особую роль, которая принадлежит процессам их взаимодействия на основе принципа дополнительности Н. Бора (Радзивилл, 1986а; Депен-чук, Крисаченко, 1986; Гиляров, 1990; Делю, 1990; Емельянов, 1992; Эп-штейн, 1993).

Известно, что постоянные флуктуации среды вызывают адекватные перестройки в структуре видовых популяций, сообществ, биот (Юрцев, 1990), в связи с чем существование той или иной системы в конкретных условиях среды определяется адекватностью ее структуры данным усло­виям (Мовчан, Семичаевский, 1991; Шеляг-Сосонко и др., 1991). В осно­ве достижения такой адекватности лежат процессы самоорганизации, при этом адаптивные возможности биосистем зависят от их способности на­капливать и перерабатывать получаемую го окружающей среды инфор­мацию. Степень самоорганизации зависит от структурной сложности био­систем, включающей множественность элементов и разветвленность связей между ними, а также характер взаимодействия элементов по принципу обратных связей, т.е. от их структурно-функциональной организации. В этой связи основной характеристикой биосистем является их относительная стабилизация (устойчивость) — способность к поддержанию и вос­становлению своей структуры при ее нарушениях, т.е. способность к са­морегуляции (Шмальгаузен, I960, 1960а, 1968; Сетров, 1971; Водопья­нов, 1974; Логинов, 1976; Коган, 1977а; Новосельцев, 1978; Николис, Пригожий, 1979; Голубец, 1982, Шедяг-Сосонко и др., 1991; Емельянов, 1992,1994; Голубець, 1997а; Радкевич, 1998 и др.).

Следовательно, струк­турные характеристики биосистем (или отдельных их подсистем) могут выступать в качестве показателей характера действия комплекса абиоти­ческих факторов, интенсивности, продолжительности и периодичности их влияния на биосистемы.
Ранее отмечалось (см. главу 2), что в качестве "хранителя ин­формации" у биосистем надорганизменного уровня интеграции могут выступать их структурные характеристики. Следовательно, по осо­бенностям структурной организации биосистем и/или изменениям в струк­туре их подсистем, можно, по-видимому, судить и о направленности энт­ропийных процессов в экосистемах в целом. Из этого вытекает важный методологический вывод: характер взаимодействия важнейших подсис­тем в экосистеме проявляется в виде изменений структурных характери­стик подсистем.

Как нами уже обсуждалось, существование биологических систем в переменной среде возможно лишь при условии нахождения их в ко­лебательном режиме, причем биосистемы разного уровня интеграции (от организма до биосферы включительно) являются колебательными систе­мами. В этой связи при рассмотрении функционирования экосистем с позиций системно-структурного подхода следует отметить, что оно ос­новано на взаимодействии (взаимном дополнении) главнейших подсис­тем в их единстве и противоположности и возможно лишь при гетероген­ности экосистемы, т.е. благодаря максимальным отличиям в структур­ном разнообразии взаимодействующих подсистем (Емельянов, 1990), что обусловлено различной направленностью энтропийных процессов в под­системах. Последнее обеспечивается существованием постоянных физи­ческих барьеров, препятствующих свободному обмену энергией и веще­ством между биотическим и абиотическим компонентами (Паттен, 1966).

При анализе взаимосвязанных изменений структурных характерис­тик важнейших подсистем экосистемы необходимо сопоставление эн­тропийных процессов, происходящих при их взаимодействии. Применение индекса Шеннона, например, для определения видового разнообразия биотических сообществ предусматривает суммирование вероятностей (нормированных собственным логарифмом) обнаружения представите­лей каждого вида. Подобный подход к определению содержит кажущее­ся противоречие, связанное с тем, что наибольшее разнообразие предпо­лагается при одинаковой численности всех видов (максимальной выров-ненности), т. е. при однообразии численностей. Такой взгляд устоялся сегодня в науке.

Следуя логике показателя Шеннона, наибольшая выровненность (со­ответственно, наименьшая вариабельность) параметров во времени со­ответствует наибольшему разнообразию факторов, что, не совсем согла­суется с привычным представлениями, отождествляющими термины "ва­риабельность" и "разнообразие" и имеющими место, когда речь идет об абиотических параметрах. Это связано с отсутствием подходов и мето­дов определения разнообразия абиотических факторов. Вариабельность — характеристика, связанная с величиной дисперсии параметров, обрат­ная выровненности. С другой стороны, величина Шенноновской функ­ции разнообразия прямо связана с выровненностыо. В связи с этим при­менение формулы Шеннона для определения разнообразия абиотичес­ких факторов ведет к получению наивысших величин разнообразия в ста­бильной (невариабельной), выровненной во времени среде.

Этот методический прием приходится применять для обеспечения корректности сравнения разнообразия в обеих главнейших подсистемах экосистем — биотической и абиотической. Понятно, что сегодня анализ разнообразия в абиотическом блоке может быть проведен только на каче­ственном уровне, без выявления количественных аспектов изменения раз­нообразия абиотических компонентов. Тем не менее и такой анализ, по-видимому, представляет значительный интерес.

Комментарии материала:

Разместить комментарий

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Другие материалы

У. Р. Эшби (1959) при построении своей теории биологического го-меостаза указывал, что организм для поддержания своей стабильности должен запасать информацию, поступающую из окружающей среды, в некоем "регуляторе" в количестве, по меньшей мере соответствующем числу "нарушений", стремящихся вывести его за те границы, в которых...
Независимый социолог-исследователь Мария Туровец на примере протестов в Архангельской и Воронежской областях попыталась разобраться, как устроены изнутри экологические протесты в России и что влияет на их длительность и устойчивость. В августе 2019 года исполнился год протестам в Шиесе, самому активному на сегодня, однако далеко не первому низовому экологическому движению в России. До него с 2012 до 2014 года жители протестовали против добычи никеляв Воронежской области....
Как участника волонтерского движения «Серебрянные волонтеры» Бурятии меня пригласили на второй межрегиональный Байкальский форум этого движения. Форум проходил на берегу Байкала в селе Энхалук Кабанского района Бурятии.  Заглянул в Интернет насчет погоды там на 30-31.09.2019 – не жарко: днем 14С, ночью 10. А ведь август -  самый разгар бархатного сезона не только на Байкале. Пришлось одеть обычную полевую геологическую одежку.  А уже в автобусе было время подумат...
Сам себе расследователь: как пользоваться открытыми базами данных. Умение работать с источниками информации – важнейший навык для любого активиста. В предыдущих главах мы обсуждали, как получать нужную информацию и как сделать из нее начинку для «реактивного снаряда» кампании – использовать в заявлениях в компетентные органы. Но добывать нужные сведения можно не только при помощи сарафанного радио или официальных запросов, на которые часто приходят отписки или неправомерн...
Эксперты и активисты регионального штаба ОНФ в Москве помогли жителям деревни Нижнее Валуево Новомосковского административного округа Москвы спасти территорию Марьинского оврага от затопления и вымирания «краснокнижных» животных и растений. История с Марьинским ручьем длилась более трех лет. Летом 2017 года обеспокоенные жители обратились в московский штаб ОНФ с просьбой разобраться в ситуации. В ходе выездного рейда активисты Народного фронта на месте природного оврага и русла ручь...
«Мы получаем от природы воздух, которым мы дышим, воду, которую мы пьем, продовольствие и ресурсы, которые мы используем. Природа поддерживает функционирование нашей экономики и что, не менее важно, наше здоровье, вдохновение и счастье». - Марко Ламбертини, Генеральный Директор Международного секретариата WWF International   ЧТО ТАКОЕ УСТОЙЧИВОЕ ИСПОЛЬЗОВАНИЕ БИОРАЗНООБРАЗИЯ? КОНЦЕПЦИЯ И ПРИМЕНЕНИЕ Термин «биологическое разнообразие» начал широко применяться с 1972...

Материалы данного раздела

Фотогалерея

Интересные ссылки

Коллекция экологических ссылок

«Спутниковый мониторинг пожаров на Дальнем востоке России». Сервис работает на основе технологии «Геомиксер», разработанной в ИТЦ «СКАНЭКС»

«Спутниковый мониторинг пожаров на Дальнем востоке России». Сервис работает на основе технологии «Геомиксер», разработанной в ИТЦ «СКАНЭКС»

Активность на сайте

сортировать по иконкам
49 недель 2 дня назад
Екатерина Алтайская
Екатерина Алтайская аватар
Приливы и отливы-результат опрокидыван­и­я водоворотов

Смотрели: 4,702 |

Добрый день, уважаемые форумчане! Я пишу статьи про ФККО, на самые злободневные темы. Предлагаю вам ознакомиться с последними материалами о...

3 года 42 недели назад
Юсуп Хизиров
Юсуп Хизиров аватар
Приливы и отливы-результат опрокидыван­и­я водоворотов

Смотрели: 4,702 |

Отзывы на гипотезу:­­

Викизнание: Обсуждение: Приливы_и_отлив­­ы
http:/.../goo.gl/JTHKlX
Википедия: Обсуждение: Прилив и...

3 года 42 недели назад
Юсуп Хизиров
Юсуп Хизиров аватар
Приливы и отливы-результат опрокидыван­и­я водоворотов

Смотрели: 4,702 |

Стоячие волны, и волны убийцы, полагаю ­результат деятельности водоворотов.
http:/.../goo.gl/vC3a3j
https:/.../goo.gl/nR1WNZ...

3 года 42 недели назад
Юсуп Хизиров
Юсуп Хизиров аватар
Приливы и отливы-результат опрокидыван­и­я водоворотов

Смотрели: 4,702 |

Причиной вертикальньного перемещения ок­еанических вод также является прецессия ­водоворотов. В природе нет суеты и если ­прецессия водоворо...

3 года 42 недели назад
Юсуп Хизиров
Юсуп Хизиров аватар
Приливы и отливы-результат опрокидыван­и­я водоворотов

Смотрели: 4,702 |

Схема движения приливной волны, по пери­­метру Североантлантического­ планетарно­г­о водоворота (съемка со­ спутника)
...

размешен 14.09.19 | Тип: Статью

Профессии будущего рождаются из новых подходов. Один из таких подходов – социальное предпринимательство.

Что это за подход? Когда на смену максимизаци...

размешен 13.09.19 | Тип: Статью

 Известный российский журналист, кандидат филологических наук, пр...

размешен 13.09.19 | Тип: Статью

«Протест действием»: как организовать и провести публичную акцию.

...
размешен 13.09.19 | Тип: Статью

Активисты регионального отделения ОНФ в Москве на базе столичного Экоцентра «Воробьевы горы», подведомственного Департаменту природопользования и охраны окружающей среды Москвы,...

размешен 13.09.19 | Тип: Статью

Непобедимый А.В.Суворов. Гусар, Герой Великой Отечественной, генерал А.В.Горбатов.

Вскоре после окончания Великой Отечественной Войны справили новоселье жиль...

Подпишись на рассылку

Будьте в курсе последних новостей!

RSS-материал